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Remarks about the exercises

• The excercises are written on the transparencies.

• Try to solve as many exercises as you can.
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Some History

The Old Quantum Mechanics

• N. Bohr (1913)

The Q.M.

• W. Heisenberg, M. Born and P. Jordan: Matrix Mechanics

• E. Schrödinger: Wave Mechanics

• P.A.M. Dirac: Relativistic Equation for the Electron

• J. Von Neumann and M.H. Stone: Rigorous mathematical
formulation of Q.M.
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Outline

Part I
Preliminaries

• Hilbert Space

• Total Orthonormal Sets

• Unbounded Linear Hilbert Adjoint, Symmetric and
Self-Adjoint Operators

• Spectral Proprerties of Self-Adjoint Operators
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Outline

Part II

• Basic Ideas of Quantum Mechanics

• The Spectral Theorem for Unbounded Self-Adjoint Operators

• J. Von Neumann’s Postulates for Quantum Mechanics

• Heisenberg’s Uncertainty Principle

• The Virial Theorem for Quantum Mechanics

Part III
Application

• The Quantum Harmonic Oscillator in One Spatial Dimension

Hatzinikitas Mathematical Foundations of Quantum Mechanics



PART I
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Hilbert Space

Definition

Let (H(K ), 〈·, ·〉) be an inner product space where

〈·, ·〉 : H×H → K .

If H is complete w.r.t. ‖·‖ =
√
〈·, ·〉 it is called a Hilbert space.

Examples:

(1) l2 = {(aj)
∞
j=1, aj ∈ C :

∑∞
j=1 |aj |2 <∞} with inner product

〈a, b〉 =
∑∞

j=1 aj b̄j <∞.

(2) L2(R, dµ) = {f compex-valued measurable functions onR :∫
R |f (x)|2dµ <∞} with inner product
〈f , g〉 =

∫
R f (x)ḡ(x)dµ.

Remark: Additionally we will assume that H is separable.
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Total orthonormal sets and sequences

Definition

A total orthonormal set in a an inner product space (H, 〈·, ·〉) is a
subset M ⊂ H for which:

(1) its span is dense in H
(2) it is orthonormal

Proposition

Let H be a Hilbert space then:

(α) If H is separable, every orthonormal set in H is countable.

(β) If H contains a countable orthonormal set which is total in H
then H is separable.
Exc.: Prove this
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Continued

Example: Hermite polynomials of order n. Consider L2(R, dx)
with inner product 〈f , g〉 =

∫
R f (x)g(x)dx and the sequence of

functions

{xne−
x2

2 }, n ∈ N0.

Applying Gram-Schmidt

en(x) =
1√

2nn!
√
π

e−
x2

2 Hn(x),

H0(t) = 1, Hn(x) = (−1)nex
2 dn

dxn
e−x

2
, n = 1, 2, · · · .

Eigenstates of the Schrödinger operator Ĥ = − ~2

2m
d2

dx2 + 1
2 kX̂ 2.
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Unbounded Linear Operators

Definition (Bounded Linear Operators)

Let X ,Y be two normed spaces and T : D(T ) ⊂ X → Y a linear
operator. The operator T is called bounded is there exists real
number c > 0 such that

‖Tx‖Y ≤ c ‖x‖X , ∀x ∈ D(T ).

Definition (Hilbert-Adjoint)

Let T : D(T )→ H be an unbounded, densely defined linear
operator on a complex Hilbert space. Then the Hilbert-adjoint
T ∗ : D(T ∗)→ H is defined as follows:

D(T ∗) =
{

y ∈ H : ∃y∗ ∈ H satisfying

〈Tx , y〉 = 〈x , y∗〉, ∀x ∈ D(T ), y∗ = T ∗y , un. det.
}
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Proposition

Let S : D(S)→ H and T : D(T )→ H be linear operators densely
defined in a complex Hilbert space H, then:

if S ⊂ T ⇒ T ∗ ⊂ S∗

Definition (Symmetric linear operator)

Let T : D(T )→ H be a linear operator densely defined in a
complex Hilbert space H. T is called a symmetric linear operator if

〈Tx , y〉 = 〈x ,Ty〉, ∀x , y ∈ D(T )

Lemma

A densely defined linear operator T in a complex Hilbert space H
is symmetric iff T ⊂ T ∗.
Exc.: Prove this
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Definition (Self-adjoint linear operator)

A densely defined linear operator T in a complex Hilbert space H
is called self-adjoint if T = T ∗.

Remark: Every self-adjoint operator is symmetric.
Examples:

(α) The multiplication operator (or position operator). The
operator X : D(X )→ L2(R, dx) with (Xf )(x) = xf (x) and
domain

D(X ) = {ψ ∈ L2(R, dx) : Xψ ∈ L2(R, dx)}

is unbounded and self-adjoint
Exc.: Prove this
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Continued

(β) The differentiation operator (or momentum operator). The
operator P : D(P) ⊂ L2(R, dx)→ L2(R, dx) with

(Pψ)(x) = −i~dψ(x)
dx and domain

D(P) =
{
ψ,Pψ ∈ L2(R, dx) :

ψ abs. con. on every compact interval on R
}

is also unbounded and self-adjoint.

Hatzinikitas Mathematical Foundations of Quantum Mechanics



Spectral Properties of Self-adjoint operators

Definition (Regular Value)

Let the normed space (X (C), ‖·‖) and the linear operator
T : D(T )→ X . A regular value λ of T is a complex number such
that:

• Rλ(T ) := T−1
λ = (T − λI )−1 exists.

• Rλ(T ) is bounded.

• Rλ(T ) is defined on a dense set of X .

The resolvent set ρ(T ) = {regular valuesλ}. The spectrum is
σ(T ) = ρc(T ) and σ(T ) = σp(T ) ∪ σc(T ) ∪ σr (T ) which are
pairwise disjoint.
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Continued

Theorem (Regular values)

Let T : D(T )→ H be a self-adjoint linear operator which is
densely defined in a complex Hilbert space H. Then a number λ
belongs to the resolvent set ρ(T ) iff there exists c > 0 such that

‖Tλx‖ ≥ c ‖x‖ , ∀x ∈ D(T ), where Tλ = T − λI .

Proposition (Spectrum)

Let T : D(T )→ H be a self-adjoint linear operator which is
densely defined in a complex Hilbert space H. The spectrum σ(T )
is real and closed.
Exc.: Prove the closedness.
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PART II
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Warm up

The result of a measurement is a random variable and Q.M. deals
with the probability distributions of such variables.

Physical quantities whose values (real numbers) can be determined
experimentally are called observables.
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(1) A single particle moving in R3 is described by a wave function
ψ : R3 × R→ C.

(2) The quantity ρt(x) = |ψ(x , t)|2 is interpreted as the probality
density function of the particle at time t in the state ψ.

(3) The location x of a particle (which is an observable) due to
the probabilistic interpretation it is also a random variable
with expectation value given by Eψ(X ) =

∫
R3 x |ψ(x , t)|2 d3x .

In real life Eψ(χΩ) =
∫
R3 χΩ(x) |ψ(x , t)|2 d3x =∫

Ω |ψ(x , t)|2 d3x , Ω ⊂ R3.

(4) The mean square deviation
∆ψ(X ) = Eψ(X 2)− (Eψ(X ))2 = ‖(X − Eψ(X ))ψ‖2 is always
no zero in contradistinction to Classical Mechanics.
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The Spectral Theorem for Unbounded Self-Adjoint
Operators

Let A be an unbounded, densely defined and self-adjoint operator
in a complex Hilbert space H. Then there exists a family of
orthogonal projections {E (λ)}, −∞ < λ <∞ such that:

(1) λ1 ≤ λ2 implies E (λ1) ≤ E (λ2) (monotonicity).

(2) For ε > 0 E (λ+ ε)
s→ E (λ) as ε→ 0 (strong continuity from

the right).

(3) E (λ)
s→ 0 as λ→ −∞ and E (λ)

s→ I as λ→ +∞.

(4) A is recovered from the family {E (λ)} by the formula

A =

∫
R
λdE (λ)

with domain

D(A) =

{
f ∈ H : ‖Af ‖2 =

∫
R
λ2d ‖E (λ)f ‖2 <∞

}
.
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(5) If {F (λ)} is a generalised resolution of the identity (properties
(1)-(3)) such that

A =

∫
R
λdF (λ)

then
E (λ) = F (λ),∀λ.

Proof due to Riesz and Lorch or J. von Neumann.
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J. von Neumann’s Postulates

Post. 1 The states of a quantum mechanical system are described by
non-zero vectors of a complex separable Hilbert space H.
Two vectors describe the same state iff they differ by a
non-zero complex factor. Each observable corresponds to a
certain (unique) linear self-adjoint operator in H.

Post. 2 Observables are simultaneously measurable iff the
corresponding self-adjoint operators commute. If observables
sj , j = 1, · · · , n are simultaneously measurable then, for a
given ψ, their joint distribution function is of the form

Pψ(λ1, · · · , λn) =
∥∥∥E

(1)
λ1
· · ·E (n)

λn
ψ
∥∥∥2

where E
(j)
λj

are the projection operators of the spectral families

correspoding to operators Sj .
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Continued

Post. 3 Let ψ0 represents the state of a system at t = 0. Then the
state of the system at any time t is represented by

ψ(t) = Utψ0 where Ut = e−
i
~Ht is a unitary operator called

evolution operator. The vector ψ(t) is differentiable if
ψ ∈ D(H) and in this case satisfies the Schrödinger’s equation

i~
dψ(t)

dt
= Hψ(t), ~ =

h

2π

where H is time-independent, h is Planck’s constant and
i =
√
−1.

Post. 4 Every non-zero vector of the state space H corresponds to a
state of the system and every self-adjoint operator
corresponds to an observable.
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Theorems

Theorem

Let Â be a self-adjoint operator and define U(t) = e itÂ. Then

(1) ∀t ∈ R, U(t) is a unitary operator and
U(t + s) = U(t)U(s), ∀t, s ∈ R.

(2) If ψ ∈ H then limt→t0 U(t)ψ = U(t0)ψ in the strong operator
toplology. Exc.: Prove this.

(3) For ψ ∈ D(Â), limt→0(U(t)−I
t )ψ = i Âψ.

(4) If limt→0(U(t)−I
t )ψ exists then ψ ∈ D(Â).

Theorem (Stone)

Let U(t) be a strongly continuous one-parameter unitary group on
a Hilbert space H. Then, there is a self-adjoint operator Â on H
so that U(t) = e itÂ.
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Corollaries

(1) If ψ ∈ D(Â) then the mean value of the corresponding
observable in the state ψ is given by Eψ(A) = 〈Âψ,ψ〉.

(2) If ψ ∈ D(f (Â)) then the mean value of the corresponding
observable in the state ψ is given by Eψ(f (A)) = 〈f (Â)ψ,ψ〉.

(3) The variance of an observable exists iff ψ ∈ D(Â) and is given

by Varψ(A) =
∥∥∥(Â− Eψ(A))ψ

∥∥∥2
.

(4) In a state ψ an observable A takes the value λ with certainty
iff ψ is an eigenvector of the operator Â with eigenvalue λ.
Exc.: Prove this.

(5) The probability for the value of an observable measured in a
state ψ to belong in Ω is ‖E (Ω)ψ‖2.
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Heisenberg’s Uncertainty Principle

Theorem

Suppose Â and B̂ are two densely defined self-adjoint operators.
Then for any ψ ∈ D(Â) ∩ D(B̂) such that Âψ, B̂ψ ∈ D(Â) ∩ D(B̂)
we have

∆ψ(A)∆ψ(B) ≥ 1

2
|Eψ(i [Â, B̂])|

with equality if (Â− Eψ(A)Î )ψ = −iλ(B̂ − Eψ(B)Î )ψ, λ ∈ R/{0}
or if ψ is an eigenstate of Â or B̂.
Exc.: Prove it.

Corollary

If two observables are canonically conjugate ([Â, B̂] = i~Î ) then
their mean-square deviations satisfy the inequality

∆ψ(A)∆ψ(B) ≥ ~
2
.
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Continued

The equality (for X̂ , P̂) is achieved by the Gaussian’s wavepackets

ψ(x1, x2, x3) =
3∏

j=1

(
1

2π(∆ψXj)2

) 1
4

e
−
[

(xj−Eψ(Xj ))

2(∆ψXj )

]2

e
i
~ (EψPj )xj .

Exc.: Prove it in one-dimension.

Proposition (The “refined“ Heisenberg’s Uncertainty Principle)

For ψ ∈ C∞0 (Rd) the following inequality holds

−4 ≥ (d − 2)2

4

1

|X |2
.
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The Virial Theorem in Q.M.

Theorem

Let ψ ∈ D(Ĥ), ‖ψ‖ = 1 be an eigenstate of the Schr ödinger
operator Ĥ = Ĥ0 + V̂ with homogeneous potential of degree ρ.
Then

EψH0 =
ρ

2
EψV .

Exc.: Apply it to the case of the one-dimensional quantum
harmonic oscillator to find EψnV knowing EψnH.
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The Quantum Harmonic Oscillator in 1D

The classical harmonic oscillator
The equation of motion is

mq̈(t) + kq(t) = 0⇒ q̈(t) + ω2q(t) = 0, ω2 =
k

m

where ω is the angular frequency and the general solution is

q(t) = A cos(ωt + φ)

The momentum and energy are given by

p(t) = mq̇(t) = −Amω sin(ωt + φ), E =
1

2
kA2.

Using th initial conditions p(0) = p0 and q(0) = q0 we obtain

q(t) = q0 cos(ωt)+
p0

mω
sin(ωt), p(t) = p0 cos(ωt)−q0mω sin(ωt).
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Continued

The probability of finding the oscillating object in the interval
[x , x + dx ] is

fcl(x)dx =
dt(x)

T/2
=

dx

π
√

A2 − x2

where fcl(x) is the classical probability density function.
Exc.: Show the second equality.
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The quantum harmonic oscillator
The Schrödinger (or Hamiltonian) operator is

Ĥ =
P̂2

2m
+

1

2
kX̂ 2 = − ~2

2m

d2

dx2
+

1

2
kX̂ 2 = ~ω(A∗A +

1

2
)

where

A =
1√
2

(ξ +
d

dξ
) =

1√
2

(aX +
i

~a
P), A∗ =

1√
2

(ξ − d

dξ
)

A, A∗ are the annihilation and creation operators correspondingly.
The domain of the Hamiltonian is the Schwartz space

D(H) =S(R) = {f ∈ C∞(R) : supx∈R|xn(Dmf )(x)| <∞,∀m, n ∈ N0}
⊆ L2(R)
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Continued

The operators A, A∗ satisfy the commutation relations

[A,A∗] = I , [N,A] = −A, [N,A∗] = A∗,N = A∗A

Note that If Nψ = λψ with ψ 6= 0 then

• From ‖Aψ‖2 ≥ 0 implies λ ≥ 0 (boundedness from below).

• For λ = 0, Aψ0 = 0 and for λ > 0, Aψ 6= 0 and
N(Aψ) = (λ− 1)Aψ

• A∗ψ 6= 0 and N(A∗ψ) = (λ+ 1)A∗ψ.

• σp(N) = N0.

Exc.: Show the second or third claim.
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Continued

The eigenstates of the Hamiltonian are

ψn(x) =
1√
n!

(A∗)nψ0(x), ψ0(x) =
(mω

π~

) 1
4

e−
mω
2~ x2

the Hermite polynomials. They span the eigenspace with
eigenvalues En = ~ω(n + 1

2 ), n ∈ N0. Using the isomorphism

L2(R, dq) 3 ψ =
∞∑
n=0

cnψn → c = {cn}n∈N ∈ l2

the annihilation and creation operators are represented by the
semi-infinite matrices:

A =


0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
0 0 0 · · ·
...

...
...

...
. . .

 , A∗ =


0 0 0 0 · · ·√
1 0 0 0 · · ·

0
√

2 0 0 · · ·
0 0

√
3 0 · · ·

...
...

...
...

. . .
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Continued

Correspondence with Classical Mechanics
Exc.: Justify the matrix representations of A and A∗ from the
previous transparency as well as those for X ,P.

fqm(x) = |ψn(x)|2 n>>1∼ 2α

π
√

2n − α2x2
cos2

[(
2n +

1

2

)
αx√

2n
− nπ

2

]
∼=

1

π
√

2n
α2 − x2

= fcl(x)

Remark: Classically the particle is constrained into the interval

|x | ≤ A =
√

2E
mω2 but quantum mechanically

P(X ∈ (−∞,−
√

~
mω

] ∪ [

√
~

mω
,∞)) =

∫
|x |≥

√
~

mω

|ψ0(x)|2dx

' 0.1572992070
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Thank you for your attention

Hatzinikitas Mathematical Foundations of Quantum Mechanics


